

Supplementary Material

Article Title: Anosognosia Is an Independent Predictor of Conversion From Mild Cognitive Impairment to Alzheimer's Disease and Is Associated With Reduced Brain Metabolism

THE OFFICIAL IOURNAL OF THE AMERICAN SOCIET

- Author(s): Philip Gerretsen, MD, PhD, FRCPC^{a,b,c,d,e,*}; Jun Ku Chung, BSc^{a,c}; Parita Shah, BSc^a; Eric Plitman, BSc^{a,c}; Yusuke Iwata, MD^{a,d}; Fernando Caravaggio, PhD^{a,b}; Shinichiro Nakajima, MD, PhD^{a,d}; Bruce G. Pollock, MD, PhD, FRCPC^{b,c,d,e}; and Ariel Graff-Guerrero, MD, PhD^{a,b,c,d,e}; for the Alzheimer's Disease Neuroimaging Initiative
- DOI Number: https://doi.org/10.4088/JCP.16m11367

List of Supplementary Material for the article

- 1. <u>eTable 1</u> Stepwise linear regression analyses to determine the relationship between anosognosia (ECog-composite) and FDG-PET brain metabolism after including covariates
- 2. <u>eTable 2</u> Sensitivity and specificity of anosognosia (i.e ECog-composite) cut-off scores to predict conversion from MCI to dementia within 5 years

Disclaimer

This Supplementary Material has been provided by the author(s) as an enhancement to the published article. It has been approved by peer review; however, it has undergone neither editing nor formatting by in-house editorial staff. The material is presented in the manner supplied by the author.

© Copyright 2017 Physicians Postgraduate Press, Inc.

Predictors	В	95% CI	Partial Correlation	р
Healthy Comparison ^a				
CDR-SB	0.210	0.044 to 0.375	0.130	0.013
MCI Nonconverters ^a				
CDR-SB	0.185	0.110 to 0.259	0.238	< 0.001
MCI Converters ^a				
CDR-SB	0.284	0.145 to 0.422	0.380	< 0.001
AD^{b}				
CDR-SB	0.219	0.154 to 0.283	0.446	< 0.001
Education	-0.070	0.154 to 0.283	-0.242	0.001
MoCA	0.037	0.010 to 0.064	0.199	0.007
FDG-PET combined	-0.178	-0.335 to -0.022	-0.166	0.026
FDG-PET PCC	-1.468	-2.111 to -0.826	-0.319	< 0.001
FDG-PET Right Angular	-0.591	-1.188 to 0.006	-0.144	0.052

Supplementary eTable 1. Stepwise linear regression analyses to determine the relationship between anosognosia (ECog-composite) and FDG-PET brain metabolism after including covariates.

AD=Alzheimer's Dementia; MCI=Mild Cognitive, Impairment; FDG-PET=fluorine-18 fluorodeoxyglucose positron emission tomography; MoCA=Montreal Cognitive Assessment; CDR-SB=Clinical Dementia Rating Scale Sum of Boxes; PCC=posterior cingulate cortex. ^a Variables excluded due to statistical insignificance: gender, ApoE4 carrier status, education, age, MoCA, and all FDG-PET ROIs.

^b Variables excluded due to statistical insignificance: gender, ApoE4 carrier status, age, MoCA, left temporal, right temporal, and left angular ROIs.

Cut point	Sensitivity	Specificity	Total (n=525)	Converters (%)	Nonconverters (%)	Missing (%)
≤-1.25	1.00	0.05	23	0 (0)	22 (95.7)	1 (4.3)
≤-1.00	0.95	0.09	44	5 (10.9)	39 (84.8)	2 (4.3)
≤-0.75	0.93	0.15	72	7 (9.7)	61 (84.7)	4 (5.6)
≤-0.50	0.88	0.25	117	13 (11.1)	99 (88.4)	5 (4.3)
≤-0.25	0.76	0.39	194	24 (12.4)	161 (83.0)	9 (4.6)
0	0.61	0.64	525	101 (19.2)	398 (75.8)	26 (5.0)
≥0.25	0.58	0.76	141	47 (32.0)	94 (63.9)	6 (4.1)
≥0.50	0.49	0.87	88	37 (40.2)	51 (55.4)	4 (4.3)
≥0.75	0.38	0.92	61	30 (47.6)	31 (49.2)	2 (3.2)
≥1.00	0.29	0.96	39	22 (55.0)	17 (42.5)	1 (2.5)
≥1.25	0.15	0.98	26	16 (61.5)	10 (38.5	0 (0.0)

Supplementary eTable 2. Sensitivity and specificity of anosognosia (i.e ECog-composite) cutoff scores to predict conversion from MCI to dementia within 5 years.

ECog-composite=Everyday Cognition - Study Partner Report (ECog-PR) minus the ECog - Participant Self-Report (ECog-SR); MCI=Mild Cognitive Impairment