Original Research September 9, 2021

GLP-1 Analogs Are Superior in Mediating Weight Loss But Not Glycemic Control in Diabetic Patients on Antidepressant Medications: A Retrospective Cohort Study

Carolyn L. Gonzalez, MD; Salman Azim, MD; Susanne U. Miedlich, MD

Prim Care Companion CNS Disord 2021;23(5):20m02868

ABSTRACT

Objective: Both antipsychotic and antidepressant medications have been associated with weight gain and hyperglycemia. Our previously published retrospective cohort study suggests that GLP-1 (glucagon-like peptide-1) analogs may be superior to alternative regimens for both glycemic and weight control in patients on antipsychotic plus/minus antidepressant medications. In the current study, we asked whether GLP-1 analogs or SGLT-2 (sodium-glucose-transporter-2) inhibitors would be similarly beneficial in patients on antidepressant medications alone.

Methods: In this retrospective cohort study, we included all patients with type 2 diabetes on antidepressant medications referred to our endocrine clinics between January 1, 2016, and January 1, 2017. Overall, 61 patients were started on a GLP-1 analog, 9 patients were started on an SGLT-2 inhibitor, and 134 were on alternative regimens (controls).

Results: The groups did not differ in age, sex, ethnicity, and glycosylated hemoglobin (HbA1c) levels, although body mass index levels were higher in patients started on a GLP-1 analog (P < .0001). After 12 months, patients on GLP-1 analogs lost 4 kg, patients on SGLT-2 inhibitors lost 2.4 kg, and controls gained 0.8 kg (P < .001 for controls versus GLP-1 analog group). Subanalyses revealed that GLP-1 analog–related weight loss was most notable in women and patients on selective serotonin reuptake inhibitors. On the other hand, all serotonin-norepinephrine reuptake inhibitor users lost weight over time, independent of the antidiabetic regimen applied. In contrast to the above noted differences in weight control, HbA1c reductions were comparable and somewhat diminished in all patients on antidepressant medications (−0.3% to 0.6%).

Conclusions: In this retrospective cohort study, we confirm superiority of GLP-1 analogs in mediating weight loss in patients on psychotropic and, more specifically, antidepressant medications. We also note overall blunted glycemic improvements in patients on antidepressant medications, a finding that was independent of the treatment strategy used. It could be a result of mental distress or suboptimal self-care and clearly requires further attention by future, prospective studies.

Continue Reading...

Did you know members enjoy unlimited free PDF downloads as part of their subscription? Subscribe today for instant access to this article and our entire library in your preferred format. Alternatively, you can purchase the PDF of this article individually.

Subscribe Now

Already a member? Login

Purchase PDF for $40

Members enjoy free PDF downloads on all articles. Join today

  1. National Diabetes Statistics Report 2020 - Estimates of Diabetes and Its Burden in the United States. CDC website. https://www.cdc.gov/diabetes/data/statistics-report/index.html. 2020.
  2. Bhupathiraju SN, Hu FB. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res. 2016;118(11):1723–1735. PubMed CrossRef
  3. Allison DB, Mentore JL, Heo M, et al. Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry. 1999;156(11):1686–1696. PubMed
  4. Goff DC, Sullivan LM, McEvoy JP, et al. A comparison of ten-year cardiac risk estimates in schizophrenia patients from the CATIE study and matched controls. Schizophr Res. 2005;80(1):45–53. PubMed CrossRef
  5. Hegedűs C, Kovács D, Kiss R, et al. Effect of long-term olanzapine treatment on meal-induced insulin sensitization and on gastrointestinal peptides in female Sprague-Dawley rats. J Psychopharmacol. 2015;29(12):1271–1279. PubMed CrossRef
  6. Smith GC, Chaussade C, Vickers M, et al. Atypical antipsychotic drugs induce derangements in glucose homeostasis by acutely increasing glucagon secretion and hepatic glucose output in the rat. Diabetologia. 2008;51(12):2309–2317. PubMed CrossRef
  7. Smith GC, Vickers MH, Cognard E, et al. Clozapine and quetiapine acutely reduce glucagon-like peptide-1 production and increase glucagon release in obese rats: implications for glucose metabolism and food choice behaviour. Schizophr Res. 2009;115(1):30–40. PubMed CrossRef
  8. van der Zwaal EM, Janhunen SK, la Fleur SE, et al. Modelling olanzapine-induced weight gain in rats. Int J Neuropsychopharmacol. 2014;17(1):169–186. PubMed CrossRef
  9. Vidarsdottir S, de Leeuw van Weenen JE, Frölich M, et al. Effects of olanzapine and haloperidol on the metabolic status of healthy men. J Clin Endocrinol Metab. 2010;95(1):118–125. PubMed CrossRef
  10. Serretti A, Mandelli L. Antidepressants and body weight: a comprehensive review and meta-analysis. J Clin Psychiatry. 2010;71(10):1259–1272. PubMed CrossRef
  11. Salvi V, Grua I, Cerveri G, et al. The risk of new-onset diabetes in antidepressant users: a systematic review and meta-analysis. PLoS One. 2017;12(7):e0182088. PubMed CrossRef
  12. Pratt LA, Brody DJ, Gu Q. Antidepressant use among persons aged 12 and over: United States, 2011–2014. NCHS Data Brief. 2017;(283):1–8. PubMed
  13. Gerstein HC, Bosch J, Dagenais GR, et al; ORIGIN Trial Investigators. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–328. PubMed CrossRef
  14. Kahn SE, Haffner SM, Heise MA, et al; ADOPT Study Group. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355(23):2427–2443. PubMed CrossRef
  15. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–1589. PubMed CrossRef
  16. Marso SP, Bain SC, Consoli A, et al; SUSTAIN-6 Investigators. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–1844. PubMed CrossRef
  17. Marso SP, Daniels GH, Brown-Frandsen K, et al; LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–322. PubMed CrossRef
  18. Neal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(21):2099. PubMed
  19. Wiviott SD, Raz I, Bonaca MP, et al; DECLARE–TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–357. PubMed CrossRef
  20. Woo YS, Lim HK, Wang SM, et al. Clinical evidence of antidepressant effects of insulin and anti-hyperglycemic agents and implications for the pathophysiology of depression:a literature review. Int J Mol Sci. 2020;21(18):6969. PubMed CrossRef
  21. Siskind D, Hahn M, Correll CU, et al. Glucagon-like peptide-1 receptor agonists for antipsychotic-associated cardio-metabolic risk factors: a systematic review and individual participant data meta-analysis. Diabetes Obes Metab. 2019;21(2):293–302. PubMed CrossRef
  22. Perlis LT, Lamberti JS, Miedlich SU. Glucagon-like peptide analogs are superior for diabetes and weight control in patients on antipsychotic medications: a retrospective cohort study. Prim Care Companion CNS Disord. 2020;22(1):19m02504. PubMed CrossRef
  23. Cascade E, Kalali AH, Kennedy SH. Real-world data on SSRI antidepressant side effects. Psychiatry (Edgmont). 2009;6(2):16–18. PubMed
  24. Garfield LD, Dixon D, Nowotny P, et al. Common selective serotonin reuptake inhibitor side effects in older adults associated with genetic polymorphisms in the serotonin transporter and receptors: data from a randomized controlled trial. Am J Geriatr Psychiatry. 2014;22(10):971–979. PubMed CrossRef
  25. Hainer V, Kabrnova K, Aldhoon B, et al. Serotonin and norepinephrine reuptake inhibition and eating behavior. Ann N Y Acad Sci. 2006;1083(1):252–269. PubMed CrossRef
  26. Salvi V, Barone-Adesi F, D’Ambrosio V, et al. High H1-affinity antidepressants and risk of metabolic syndrome in bipolar disorder. Psychopharmacology (Berl). 2016;233(1):49–56. PubMed CrossRef
  27. Salvi V, Mencacci C, Barone-Adesi F. H1-histamine receptor affinity predicts weight gain with antidepressants. Eur Neuropsychopharmacol. 2016;26(10):1673–1677. PubMed CrossRef
  28. Hennings JM, Schaaf L, Fulda S. Glucose metabolism and antidepressant medication. Curr Pharm Des. 2012;18(36):5900–5919. PubMed CrossRef
  29. Zinman B, Wanner C, Lachin JM, et al; EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–2128. PubMed CrossRef
  30. Lorenzi M, Ploug UJ, Langer J, et al. Liraglutide versus SGLT-2 inhibitors in people with type 2 diabetes: a network meta-analysis. Diabetes Ther. 2017;8(1):85–99. PubMed CrossRef
  31. Ali AM, Martinez R, Al-Jobori H, et al. Combination therapy with canagliflozin plus liraglutide exerts additive effect on weight loss, but not on HbA1c, in patients with type 2 diabetes. Diabetes Care. 2020;43(6):1234–1241. PubMed CrossRef
  32. Mesmar B, Poola-Kella S, Malek R. The physiology behind diabetes mellitus in patients with pheochromocytoma: a review of the literature. Endocr Pract. 2017;23(8):999–1005. PubMed CrossRef
  33. Kuo T, McQueen A, Chen TC, et al. Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol. 2015;872:99–126. PubMed CrossRef
  34. Joseph JJ, Golden SH. Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann N Y Acad Sci. 2017;1391(1):20–34. PubMed CrossRef